skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schubert, Eva"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chang-Hasnain, Connie J; Zhou, Weimin; Alù, Andrea (Ed.)
    Free, publicly-accessible full text available March 20, 2026
  2. We experimentally demonstrate and theoretically verify a spectrally controllable, extremely large, broadband chiroptical response from three-dimensional all-dielectric broken L-shape nano-boomenrang metamaterial platforms. This innovative design holds great potential for seamless integration into on-chip photonic devices. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. We investigate the time evolution of ZnO thin film growth in oxygen plasma-enhanced atomic layer deposition using in situ spectroscopic ellipsometry. The recently proposed dynamic-dual-box-model approach [Kilic et al., Sci. Rep. 10, 10392 (2020)] is used to analyze the spectroscopic data post-growth. With the help of this model, we explore the in-cycle surface modifications and reveal the repetitive layer-by-layer growth and surface roughness modification mechanisms during the ZnO ultrathin film deposition. The in situ complex-valued dielectric function of the amorphous ZnO thin film is also determined from the model analysis for photon energies of 1.7–4 eV. The dielectric function is analyzed using a critical point model approach providing parameters for bandgap energy, amplitude, and broadening in addition to the index of refraction and extinction coefficient. The dynamic-dual-box-model analysis reveals the initial nucleation phase where the surface roughness changes due to nucleation and island growth prior to film coalescence, which then lead to the surface conformal layer-by-layer growth with constant surface roughness. The thickness evolution is resolved with Angstrom-scale resolution vs time. We propose this method for fast development of growth recipes from real-time in situ data analysis. We also present and discuss results from x-ray diffraction, x-ray photoelectron spectroscopy, and atomic force microscopy to examine crystallographic, chemical, and morphological characteristics of the ZnO film. 
    more » « less
  4. Abstract The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides. 
    more » « less
  5. Abstract Metal-organic decomposition epitaxy is an economical wet-chemical approach suitable to synthesize high-quality low-spin-damping films for resonator and oscillator applications. This work reports the temperature dependence of ferromagnetic resonances and associated structural and magnetic quantities of yttrium iron garnet nanofilms that coincide with single-crystal values. Despite imperfections originating from wet-chemical deposition and spin coating, the quality factor for out-of-plane and in-plane resonances approaches 600 and 1000, respectively, at room temperature and 40 GHz. These values increase with temperature and are 100 times larger than those offered by commercial devices based on complementary metal-oxide semiconductor voltage-controlled oscillators at comparable production costs. 
    more » « less
  6. Abstract Nanostructures represent a frontier where meticulous attention to the control and assessment of structural dimensions becomes a linchpin for their seamless integration into diverse technological applications. However, determining the critical dimensions and optical properties of nanostructures with precision still remains a challenging task. In this study, by using an integrative and comprehensive methodical series of studies, the evolution of the depolarization factors in the anisotropic Bruggeman effective medium approximation (AB‐EMA) is investigated. It is found that these anisotropic factors are extremely sensitive to the changes in critical dimensions of the nanostructure platforms. In order to perform a systematic characterization of these parameters, spatially coherent, highly‐ordered slanted nanocolumns are fabricated from zirconia, silicon, titanium, and permalloy on silicon substrates with varying column lengths using glancing angle deposition (GLAD). In tandem, broad‐spectral range Mueller matrix spectroscopic ellipsometry data, spanning from the near‐infrared to the vacuum UV (0.72–6.5 eV), is analyzed with a best‐match model approach based on the anisotropic Bruggeman effective medium theory. The anisotropic optical properties, including complex dielectric function, birefringence, and dichroism, are thereby extracted. Most notably, the research unveils a generalized, material‐independent inverse relationship between depolarization factors and column length. It is envisioned that the presented scaling rules will permit accurate prediction of optical properties of nanocolumnar thin films improving their integration and optimization for optoelectronic and photonic device applications. As an outlook, the highly porous nature and extreme birefringence properties of the fabricated columnar metamaterial platforms are further explored in the detection of nanoparticles from the cross‐polarized integrated spectral color variations. 
    more » « less
  7. We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E). 
    more » « less
  8. We demonstrate calibration and operation of a single wavelength (660 nm) Mueller matrix ellipsometer in normal transmission configuration using dual continuously rotating anisotropic mirrors. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick gold layers on glass substrates. Upon rotation around the mirror normal axis, sufficient modulation of the Stokes parameters of light reflected at oblique angle of incidence is achieved. Thereby, the mirrors can be used as a polarization state generator and polarization state analyzer in a generalized ellipsometry instrument. A Fourier expansion approach is found sufficient to render and calibrate the effects of the mirror rotations onto the polarized light train within the ellipsometer. The Mueller matrix elements of a set of anisotropic samples consisting of a linear polarizer and a linear retarder are measured and compared with model data, and very good agreement is observed. 
    more » « less